Transactivation of the epidermal growth factor receptor mediates cholinergic agonist-induced proliferation of H508 human colon cancer cells.
نویسندگان
چکیده
Some human colon cancer cell lines (e.g., H508 cells) express M3 subtype muscarinic receptors that are activated by cholinergic agonists. The objective of the present study was to determine the cellular mechanisms underlying M3 muscarinic receptor-mediated proliferation of H508 human colon cancer cells. In H508 cells, but not in SNU-C4 cells that do not express muscarinic receptors, acetylcholine stimulated calcium-dependent phosphorylation of p44/42 mitogen-activated protein kinase (MAPK) and p90 ribosomal S6 kinase and consequent cell proliferation. Atropine or inhibitors of MAPK phosphorylation blocked these effects. Conversely, the actions of epidermal growth factor (EGF) on H508 cells were neither calcium dependent nor mediated by cholinergic mechanisms. Both acetylcholine- and EGF-induced phosphorylation of p44/42 MAPK was abolished in the presence of EGF receptor (EGFR) inhibitors (AG1478 and PD168393). In Chinese hamster ovary cells transfected with the rat M3 muscarinic receptor, which lack EGFR, acetylcholine-induced MAPK phosphorylation was not altered in the presence of EGFR inhibitors. In H508 cells, protein kinase C inhibitors did not alter acetylcholine- or EGF-induced MAPK phosphorylation. Finally, inhibition of EGFR activation abolished acetylcholine-induced H508 cell proliferation. These data indicate that, in H508 human colon cancer cells, cholinergic ligand interaction with M3 muscarinic receptors results in transactivation of EGFR, thereby stimulating cellular proliferation.
منابع مشابه
Human Colon Cancer Cells Mediates Cholinergic Agonist-Induced Proliferation of H508 Transactivation of the Epidermal Growth Factor Receptor
Some human colon cancer cell lines (e.g., H508 cells) express M3 subtype muscarinic receptors that are activated by cholinergic agonists. The objective of the present study was to determine the cellular mechanisms underlying M3 muscarinic receptor-mediated proliferation of H508 human colon cancer cells. In H508 cells, but not in SNU-C4 cells that do not express muscarinic receptors, acetylcholi...
متن کاملAcetylcholine-induced activation of M3 muscarinic receptors stimulates robust matrix metalloproteinase gene expression in human colon cancer cells.
Previously, we showed that ACh-induced proliferation of human colon cancer cells is mediated by transactivation of epidermal growth factor (EGF) receptors (EGFRs). In the present study, we elucidate the molecular mechanism underlying this action. ACh-induced proliferation of H508 colon cancer cells, which express exclusively M3 muscarinic receptors (M3Rs), was attenuated by anti-EGFR ligand bin...
متن کاملTransactivation of the epidermal growth factor receptor by formylpeptide receptor exacerbates the malignant behavior of human glioblastoma cells.
The G protein-coupled formylpeptide receptor (FPR), which mediates leukocyte migration in response to bacterial and host-derived chemotactic peptides, promotes the chemotaxis, survival, and tumorigenesis of highly malignant human glioblastoma cells. Because glioblastoma cells may also express other receptors for growth signals, such as the epidermal growth factor (EGF) receptor (EGFR), we inves...
متن کاملMuscarinic receptor agonists stimulate human colon cancer cell migration and invasion.
Muscarinic receptors (CHRM) are overexpressed in colon cancer. To explore a role for muscarinic receptor signaling in colon cancer metastasis, we used human H508 and HT29 colon cancer cells that coexpress epidermal growth factor (ERBB) and CHRM3 receptors. In a wound closure model, following 8-h incubation of H508 cells with 100 μM ACh we observed a threefold increase in cell migration indistin...
متن کاملSrc-mediated aryl hydrocarbon and epidermal growth factor receptor cross talk stimulates colon cancer cell proliferation.
The aryl hydrocarbon receptor (AhR) mediates many toxic effects of environmental pollutants. AhR also interacts with multiple growth factor-driven signaling pathways. In the course of examining effects of growth factors on proliferation of human colon cancer cells, we identified cross talk between AhR and the epidermal growth factor receptor (EGFR). In the present work, we explored underlying s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 63 20 شماره
صفحات -
تاریخ انتشار 2003